Static balancing of spatial six-degree-of-freedom parallel mechanisms with revolute actuators

2000 ◽  
Vol 17 (3) ◽  
pp. 159-170 ◽  
Author(s):  
Cl�ment M. Gosselin ◽  
Jiegao Wang
Author(s):  
Jiegao Wang ◽  
Clément M. Gosselin

Abstract The static balancing of spatial six-degree-of-freedom parallel mechanisms or manipulators with revolute actuators is studied in this paper. Two static balancing methods, namely, using counterweights and using springs, are used. The first method leads to mechanisms with a stationary global center of mass while the second approach leads to mechanisms whose total potential energy (including the elastic potential energy stored in the springs as well as the gravitational potential energy) is constant. The position vector of the global center of mass and the total potential energy of the manipulator are first expressed as functions of the position and orientation of the platform. Then, conditions for static balancing are derived from the resulting expressions. Finally, examples are given in order to illustrate the design methodologies.


2005 ◽  
Vol 29 (4) ◽  
pp. 541-552 ◽  
Author(s):  
Marc Gouttefarde ◽  
Clément M. Gosselin

The wrench-closure workspace (WCW) of six-degree-of-freedom (DOF) parallel cable-driven mechanisms is defined as the set of poses of the moving platform of the mechanism for which any external wrench can be balanced by tension forces in the cables. This workspace is fundamental in order to analyze and design parallel cable-driven mechanisms. This paper deals with the class of six-DOF mechanisms driven by seven cables. Two theorems, which provide efficient means to test whether a given pose of the moving platform belongs to the WCW, are proposed. One of these two theorems reveals the nature of the boundary of the constant-orientation cross sections of the WCW. Moreover, some of the possible applications of these theorems are discussed and illustrated.


Author(s):  
Marc Leblond ◽  
Clément M. Gosselin

Abstract In this paper, the static balancing of existing spatial and planar parallel manipulators by the addition of balancing elements is addressed. Static balancing is defined here as the set of conditions on manipulator dimensional and inertial parameters which, when satisfied, ensure that the weight of the links does not produce any force (or torque) at the actuators for any configuration of the manipulator, under static conditions. These conditions are derived here for spatial six-degree-of-freedom parallel manipulators and it is shown that planar three-degree-of-freedom parallel manipulators can be treated as a particular case of the spatial 6-dof mechanisms. The static balancing conditions associated with planar mechanisms can therefore easily be found, but are not given here because of space limitations. A brief geometric interpretation of the balancing conditions which are associated with statically balanced spatial mechanisms is then carried out. It is shown that balancing is generally possible even when the dimensional parameters are imposed, which is a useful property since dimensional parameters are usually obtained from kinematic design or optimization. Finally, examples of balanced planar and spatial parallel manipulators are given. Static balancing leads to considerable reduction in the actuator forces (or torques), which in turn leads to less powerful actuators and more efficient designs. Moreover, the possibility of balancing existing systems by introducing additional elements, as demonstrated here, is of interest for retrofitting existing parallel mechanisms.


Author(s):  
S. M. Mehdi Shekarforoush ◽  
Mohammad Eghtesad ◽  
Mehrdad Farid

A parallel mechanism that is based on tensegrity system is studied in this article. Tensegrity systems are a suitable alternative for conventional engineering systems like mechanisms for some application. In this article, tensegrity mechanisms are classified into tensegrity mechanism with passive and active compliant components. Based on this classification, two types of six-degree-of-freedom parallel mechanism are proposed and kinematics and static of them are solved. The first type is the 6–6 tensegrity mechanism with passive compliant components and the second type is the 6-3 tensegrity mechanism with active compliant components.


Author(s):  
Damien Chablat ◽  
Philippe Wenger

This paper is devoted to the kinematic design of a new six degree-of-freedom haptic device using two parallel mechanisms. The first one, called orthoglide, provides the translation motions and the second one, called agile eye, produces the rotational motions. These two motions are decoupled to simplify the direct and inverse kinematics, as it is needed for real-time control. To reduce the inertial load, the motors are fixed on the base and a transmission with two universal joints is used to transmit the rotational motions from the base to the end-effector. Two alternative wrists are proposed (i), the agile eye with three degrees of freedom or (ii) a hybrid wrist made by the assembly of a two-dof agile eye with a rotary motor. The last one is optimized to increase its stiffness and to decrease the number of moving parts.


Sign in / Sign up

Export Citation Format

Share Document